To-Do | |
---|---|
Download and Install R | Link Video |
Download and Install RStudio | Link Video |
Setup RStudio | Video |
Download packages | File Video |
Time | Topic | Links |
---|---|---|
09:00 - 09:30 | Welcome | Slides |
09:35 - 10:30 | Introduction to R and R Markdown | Slides |
10:45 - 12:00 | Introduction to Data | Slides ● File |
Time | Topic | Links |
---|---|---|
09:00 - 09:50 | Describing Data with Numbers | Slides ● File |
10:00 - 10:50 | Interpeting Data Visualizations | Slides |
11:00 - 12:00 | Visualizing Data | Slides ● File |
13:00 - 15:00 | Lab: Summarizing Data | File |
Time | Topic | Links |
---|---|---|
09:00 - 09:40 | Improving Data Visualizations | Slides ● File |
09:40 - 10:00 | Pipe operator | Slides |
10:10 - 11:00 | Subsetting and Grouping Data | Slides ● File |
11:10 - 12:00 | Changing Variables | Slides |
Time | Topic | Links |
---|---|---|
09:00 - 09:30 | R packages | Slides ● File |
09:30 - 10:00 | Importing Data | Slides |
10:10 - 11:00 | Data Joins | Slides ● File |
11:10 - 12:00 | Review | Slides ● File |
13:00 - 15:00 | Lab: Exploring Data | Activity |
Time | Topic | Links |
---|---|---|
09:00 - 09:50 | Introduction to probability | Slides ● Activity |
10:00 - 10:50 | Joint vs. marginal | |
11:00 - 12:00 | Conditional probability and independence |
Time | Topic | Links |
---|---|---|
09:00 - 09:50 | Random variables | Slides ● Activity |
10:00 - 10:50 | Probability distributions | |
11:00 - 12:00 | Discrete vs. continuous distributions |
Time | Topic | Links |
---|---|---|
09:00 - 10:20 | Sampling distribution | Slides ● File |
10:30 - 12:00 | Confidence interval | Slides ● File ● File |
Extra | Overview | Slides |
Time | Topic | Links |
---|---|---|
09:00 - 09:50 | Null vs. alternative | Slides ● Activity |
10:00 - 10:50 | t-test | |
11:00 - 12:00 | z-test for proportions |
Time | Topic | Links |
---|---|---|
09:00 - 09:50 | Two-sample t-test | Slides ● Activity |
10:00 - 10:50 | Chi-squared test for contingency tables | |
11:00 - 12:00 | Overview of the final project |
Time | Topic | Links |
---|---|---|
09:00 - 09:50 | Introduction | Slides ● Activity |
10:00 - 10:50 | Binary explanatory variable | |
11:00 - 12:00 | Numerical explanatory variable |
Time | Topic | Links |
---|---|---|
09:00 - 09:50 | Introduction | Slides ● Activity |
10:00 - 10:50 | Additive models | |
11:00 - 12:00 | Interaction |
Time | Topic | Links |
---|---|---|
09:00 - 09:50 | Introduction | Slides ● Activity |
10:00 - 10:50 | One binary explanatory variable | |
11:00 - 12:00 | Multiple explanatory variables |
Review of statistical inference.
Data pre-processing and preliminary analysis for the final project.
Time | Topic | Links |
---|---|---|
09:00 - 09:30 | Sample vs. Population | Slides |
09:30 - 10:00 | Study Design | Slides |
10:10 - 11:00 | Model Assumptions | Slides |
11:10 - 12:00 | Model Evaluations | Slides |
Time | Topic | Links |
---|---|---|
09:00 - 10:00 | Ethics Case Studies | Link |
10:10 - 11:20 | Improving Data Visualizations | Link |
11:30 - 12:00 | Studying Data Science in College | Link |
13:00 - 15:00 | Model evaluation and validation for projects |
Hands-on work on finalizing project analysis and communication of findings.
Time | Topic | Links |
---|---|---|
09:00 - 10:00 | Practice within groups | |
10:10 - 12:00 | Presentations and feedback |
Time | Topic | Links |
---|---|---|
09:45 - 10:30 | Final Presentations | Slides |